
Priority Based Dynamic resource allocation in
Cloud Computing

Chandrashekhar S. Pawar
M. E. student

Department of Computer Engineering
R. C. Patel Institute of Technology

Shirpur, India
pawar.chandrashekhar09@yahoo.com

Rajnikant B. Wagh
Associate Professor

Department of Computer Engineering
R. C. Patel Institute of Technology

Shirpur, India
raj_wagh@rediffmail.com

Abstract- Today Cloud computing is on demand as it offers
dynamic flexible resource allocation, for reliable and
guaranteed services in pay-as-you-use manner, to Cloud
service users. So there must be a provision that all resources
are made available to requesting users in efficient manner to
satisfy customer’s need. This resource provisioning is done by
considering the Service Level Agreements (SLA) and with the
help of parallel processing. Recent work considers various
strategies with single SLA parameter. Hence by considering
multiple SLA parameter and resource allocation by
preemption mechanism for high priority task execution can
improve the resource utilization in Cloud. In this paper we
propose an algorithm which considered Preemptable task
execution and multiple SLA parameters such as memory,
network bandwidth, and required CPU time. An obtained
experimental results show that in a situation where resource
contention is fierce our algorithm provides better utilization of
resources.

Keywords- Cloud computing, Infrastructure as a Service
(IaaS), Platform as a Service (PaaS), Resource management,
Software as a Service (SaaS), Virtual machine, Virtualization.

I. INTRODUCTION

Cloud computing is the delivery of computing as a
service rather than a product, whereby shared resources,
software and information are provided to users over the
network. Cloud computing providers deliver application via
the Internet, which are accessed from web browser, while
the business software and data are stored on servers at a
remote location.

Cloud providers are able to attain the agreed SLA, by
scheduling resources in efficient manner and by deploying
application on proper VM as per the SLA objective and at
the same time performance of the applications must be
optimized. Presently, there exists a more work done on
scheduling of applications in Clouds [1], [2], [3]. These
approaches are usually considering one single SLA
objective such as cost of execution, execution time, etc. Due
to combinatorial nature scheduling algorithm with multiple
SLA objective for optimal mapping of workload with
multiple SLA parameters to resources is found to be NP-
hard [4]. The available solutions are based on the use of
heuristics.

When a job is submitted to the clouds, it is usually
partitioned into several tasks. Following two questions are
need to consider when applying parallel processing in
executing these tasks: 1). how to allocate resources to tasks;
2) task are executed in what order in cloud; and 3) how to
schedule overheads when VMs prepare, terminate or switch

tasks. Task scheduling and resource allocation can solve
these three problems. In embedded systems [5], [6] and in
high performance computing [7], [8] task scheduling and
resource allocation have been studied.

Typically, efficient provisioning requires two distinct
steps or processes: (1) initial static planning step: the
initially group the set of VMs, then classify them and
deployed onto a set of physical hosts; and (2) dynamic
resource provisioning: the allocation of additional
resources, creation and migration of VMs, dynamically
responds to varying workload. Step 2 runs continuously at
production time where in contrast Step 1 is usually
performed at the initial system set up time and may only be
repeated for overall cleanup and maintenance on a monthly
or semi-annually schedule.

In this paper we focus on dynamic resource provisioning
as mentioned above in step 2. In order to attain the agreed
SLA objective our proposed algorithm dynamically
responds to fluctuating work load by preempting the current
executing task having low priority with high priority task
and if preemption is not possible due same priority then by
creating the new VM form globally available resources.

In section II, we discuss works related to this topic. In
section III, models for resource allocation and task
scheduling in IaaS cloud computing system are presented.
We propose our algorithms in section IV, followed by
experimental result in section V. Finally, we give the
conclusion in section VI.

II. RELATED WORK

In [9] author proposed architecture, using feedback
control theory, for adaptive management of virtualized
resources, which is based on VM. In this VM-based
architecture all hardware resources are pooled into common
shared space in cloud computing infrastructure so that
hosted application can access the required resources as per
there need to meet Service Level Objective (SLOs) of
application. The adaptive manager use in this architecture is
multi-input multi-output (MIMO) resource manager, which
includes 3 controllers: CPU controller, memory controller
and I/O controller, its goal is regulate multiple virtualized
resources utilization to achieve SLOs of application byusing
control inputs per-VM CPU, memory and I/O allocation.

The seminal work of Walsh et al. [10], proposed a
general two-layer architecture that uses utility functions,
adopted in the context of dynamic and autonomous resource
allocation, which consists of local agents and global arbiter.
The responsibility of local agents is to calculate utilities, for
given current or forecasted workload and range of

resources, for each AE and results are transfer to global
arbiter. Where, global arbiter computes near-optimal
configuration of resources based on the results provided by
the local agents. In global arbiter, the new configurations
applied by assigning new resources to the AEs and the new
configuration computed either at the end of fixed control
intervals or in an event triggered manner or anticipated SLA
violation.

In [11], authors propose an adaptive resource allocation
algorithm for the cloud system with preempt able tasks in
which algorithms adjust the resource allocation adaptively
based on the updated of the actual task executions. Adaptive
list scheduling (ALS) and adaptive min-min scheduling
(AMMS) algorithms are use for task scheduling which
includes static task scheduling, for static resource
allocation, is generated offline. The online adaptive
procedure is use for re-evaluating the remaining static
resource allocation repeatedly with predefined frequency. In
each re-evaluation process, the schedulers are re-calculating
the finish time of their respective submitted tasks, not the
tasks that are assign to that cloud.

The dynamic resource allocation based on distributed
multiple criteria decisions in computing cloud explain in
[12]. In it author contribution is tow-fold, first distributed
architecture is adopted, in which resource management is
divided into independent tasks, each of which is performed
by Autonomous Node Agents (NA) in ac cycle of three
activities: (1) VMPlacement, in it suitable physical machine
(PM) is found which is capable of running given VM and
then assigned VM to that PM, (2) Monitoring, in it total
resources use by hosted VM are monitored by NA, (3) In
VMSelection, if local accommodation is not possible, a VM
need to migrate at another PM and process loops back to
into placement. And second, using PROMETHEE method,
NA carry out configuration in parallel through multiple
criteria decision analysis. This approach is potentially more
feasible in large data centers than centralized approaches.

The problem of resource allocation is considered in [13],
to optimize the total profit gained from the multi-
dimensional SLA contracts for multi-tire application. In it
the upper bound of total profit is provided with the help of
force-directed resource assignment (FRA) heuristic
algorithm, in which initial solution is based on provided
solution for profit upper bound problem. Next, distribution
rates are fixed and local optimization step is use for
improving resource sharing. Finally, a resource
consolidation technique is applied to consolidate resources
to determine the active (ON) servers and further optimize
the resource assignment.

Using steady state timing models, this [14] paper reports
a study of cloud HPC resource planning. In it author
propose quantitative application dependent instrumentation
method to investigate multiple important dimensions of a
program’s scalability. Sequential and parallel timing model
with program instrumentations can reveal architecture
specific deliverable performances that are difficult to
measure otherwise. These models are introduces to connect
multiple dimensions to time domain and application speed
up model is use to tie these models in same equation. The
ability to explore multiple dimension of program
quantitatively, to gain non-trivial insight. For target
processing environment authors use Amazon EC2.

In previous years, the aims of distributed system have
been centered on the decoupling of interfaces from service
oriented architectures (SOA) [16], implementation,
subscription model, hosting models and social
collaboration. Recently, Internet-based distributed, multi-
tenant [17] applications connective to internal business
applications, known as software as a service (SaaS) [18],
are gaining popularity. The previous work [19-21] on web
application scalability implemented for static load balancing
solution with server clusters but the dynamic scaling of web
applications in virtualized cloud computing has not been
much discussed. Because such kinds of work load require
minimum response time and high level of availability and
reliability from web applications.

A solution for dynamic scaling of web application
provided in [22] by describing an architecture to scale web
application in dynamic manner, based on threshold in a
virtualized cloud computing environment. Architecture
consists of front-end load balancer, a no. of web application
virtual machine. In it apache HTTP Load Balancer is a
front-end load-balancer for routing and balancing user
requests to web application deployed on Apache HTTP
server that are installed in Linux virtual machine. As per the
demand these virtual machines are started and provisioned
by a provisioning sub-system. But the action of
provisioning and de-provisioning of web server virtual
machine instances control by a dynamic scaling algorithm
based on relevant threshold of web application.

III. USE TECHNIQUES

In this section we are describing SLA based resource
provisioning and online adaptive scheduling for
Preemptable task execution, these two methodologies which
are combined in proposed algorithm for effective utilization
of cloud resources to meet the SLA objective.

A. Cloud Resource provisioning and scheduling heuristic

The service requests from customers host by combining
the three different layers of resource provisioning as shown
in following figure 1[24].

Figure 1. Cloud Provisioning and Deployment model

Service deployment requests from customers is place to
the service portal (step 1 in Figure1), which forward the
requests to the request management and processing
component to validate the requests with the help of
SLA(step 2). If the request is valid, it is then pass to the
scheduler and load-balancer (step 3). For deploying the
requested service, scheduler selects the appropriate VMs, as
per SLA and priority, through the provisioning engine in
PaaS layer and the load-balancer balances the service
provisioning among the running VMs (step 4). The VMs on
the virtualization layer manage by provision engine and the
virtualization layer interacts with the physical resources
with the help of the provision engine in IaaS layer (step 5).

The LoM2HiS framework monitors the low-level
resource metrics of the physical resources at IaaS layer [25]
(step 6). If SLA violation occurs, reactive actions provide
by the knowledge database techniques [26] in FoSII (step
7). The requested service status and the SLA information
are communicated back with the service portal (step 8).

Provisioning can be done at the single layers alone.
However, approach which we considered in [24] aims to
provide an integrated resource provisioning strategy. Thus,
scheduling heuristics in [24] considers the three layers.

An aim of scheduling heuristic in [24] is to schedule job
on VMs based on the agreed SLA objective and creating
new VMs on physical resources based on availabilities
resources. This strategy helps to optimized application
performance and at the same time reducing the possibilities
of SLA violations. And, the integrated load-balancer
(Algorithm 1 Load-balancer given below) in the heuristic
ensures high and efficient resource utilization in the Cloud
environment.

The customers’ service deployment requests (R) is
provide as input to scheduler which consist of the SLA
terms (S) and the application data (A) to be
provisioned. Then it gets the total available physical
resources (AR) and the number of running VMs in the
data center in cloud. The SLA terms are used to find a list
of appropriate VMs (AP) capable of provisioning the
requested service (R).

The load-balancer is presented below in Algorithm 1.
Appropriate VM list is provided as input to it (line 1 in
Algorithm 2). In its operations, in order to know how to
balance the load among the VMs it first finds out the
number of available running VMs in the data centre (line 2).
In the next step, it gets a list of VMs which are already
allocated to job i.e. list of used VMs. (line 3). It clears the
list if this list is equal to the number of running VMs,
because that means all the VMs are currently allocated to
some applications (lines 4-7).

Algorithm 1 Load Balancer

1. Input: AP(R,AR)
2. availableVMList //list of available VMs form each

cloud
3. usedVMList //list of VMs,currently provision to

certain job
4. deployableVm=null

5. if size(usedVMList)=size(availbleVMList) then
6. clear usedVMList
7. End if
8. for vm in (AP,R,AR) do
9. if vm not in usedVMList then
10. Add VM to usedVMList
11. deployableVm= vm
12. Break
13. End if
14. End for

15. Return deployableVm

Therefore, the first VM from the appropriate and
available VM list can be selected for the deployment of the
new job request. Lastly, the selected VM will be added to
the list of used VMs so that the load-balancer will not select
it in the next iteration (lines 8-15).

B. Preemptable task execution

When a scheduler receives customer’s service request, it
will first partition that service request into tasks in the form
of a DAG. Then initially static resource allocation is done.
In [11] authors proposed two greedy algorithms, to generate
the static allocation: the cloud list scheduling (CLS) and the
cloud min-min scheduling (CMMS).

1) Cloud list scheduling (CLS): This CLS is similar to
CPNT [27]. The definitions used for listing the task are
provided as follow. The earliest start time (EST) and the
latest start time (LST) of a task are shown as in (1) and
(2).The entry-tasks have EST equals to 0. And The LST of
exit-tasks equal to their EST.

)2()()}({max)(

)1()}()({max)(

)(

)(





im
vsuccv

i

mm
vpredv

i

vATvLSTvLST

vATvESTvEST

im

im









As the cloud system concerned in [11] is heterogeneous
the execution time of each task on VMs of different clouds
are not the same. AT(ݒ)݅ is the average execution time of
task ݅ݒ. The critical node (CN) is a set of vertices having
equal EST and LST in the DAG. Algorithm 2 shows a
function forming a task list based on the priorities.

Algorithm 2 Forming a task list based on priorities
Require (input): A DAG, Average execution time
AT of every task in the DAG
Ensure (output): A list of task P based on priorities

1. The EST is calculated for every task
2. The LST is calculated for every task
3. The Tp and Bp of every task are calculated
4. Empty list P and stack S, and pull all task in

the list of task U

5. Push the CN task into stack S in decreasing
order of their LST

6. While the stack S is not empty do
7. If top(S) has un-stacked immediate

 predecessors then
8. S the immediate predecessor with

 least LST
9. Else
10. P top(S)
11. Pop top(S)
12. End if
13. End while

Once the above algorithm 2 form the list of task according
there priority, we can allocate resources to tasks in the order of
formed list. When all the predecessor tasks of the assigned
task are finished and cloud resources allocated to them are
available, the assigned task will start its execution. This task
is removed from the list after its assignment. This procedure
is repeats until the list is empty.

2) Cloud min-min scheduling (CMMS): Min-min
scheduling is popular greedy algorithm [28]. The
dependencies among tasks not considered in original min-
min algorithm. So in the dynamic min-min algorithm used
in [2], authors maintain the task dependencies by updating
the map able task set in every scheduling step. The tasks
whose predecessor tasks are all assigned are placed in the
map able task set. Algorithm 3 shows the pseudo codes of
the CMMS algorithm.

A cloud scheduler record execution schedule of all
resources using a slot. When an AR task is assigned to a
cloud, first resource availability in this cloud will be
checked by cloud scheduler. Since best-effort task can be
preempted by AR task, the only case when most of
resources are reserved by some other AR task. Hence there
are not enough resources left for this AR task in the
required time slot. If the AR task is not rejected, which
means there are enough resources available for the task, a
set of required VMs are selected arbitrarily.

The estimated finish time of task may not be same as
actual finish time due to the resource contention within
individual cloud. Hence to adjust the resource allocation
dynamically based on the latest available information
authors in [2] propose an online adaptive scheduling
procedure.

In proposed online adaptive procedure the remaining
static resource allocation will be re-evaluate repeatedly with
a predefined frequency. In each re-evaluation, the
schedulers will re-calculate the estimated finish time of
their tasks. Note that a scheduler of a given cloud will only
re-evaluate the tasks that are in the jobs submitted to this
cloud, not the tasks that are assigned to this cloud.

Algorithm 3 Cloud min-min scheduling (CMMS)
Require: A set of tasks, m different clouds ETM matrix
Ensure: A schedule generated by CMMS

1. For a mappable task set P

2. While there are tasks not assigned do
3. Update mappable task set P

4. For I = task vi ∈ P do

5. Send task check requests of vi to all other
cloud schedulers

6. Receive the earliest resource available time
response and And list of task with their priorities
form all other cloud scheduler

7. Find the cloud Cmin(vi) giving the earliest
finish time of vi, assuming no other task preempts
vi

8. End for
9. Find the task-cloud pair (vk, Cmin(vk)) with

earliest finish time in the pairs generated in for-
loop

10. Assign task vk to cloud Dmin(vk)
11. Remove vk form P
12. Update the mappbale task set P
13. End while

IV. SCHEDULING ALGORITHM

In proposed priority based scheduling algorithm we have
modified the scheduling heuristic in [24] for executing
highest priority task with advance reservation by
preempting best-effort task as done in [11]. Algorithm 4
shows the pseudo codes of priority based scheduling
algorithm (PBSA).

Algorithm 4 Priority Based Scheduling Algorithm (PBSA)
1. Input: UserServiceRequest
2. //call Algorithm 2 to form the list of task based on

priorities
3. get globalAvailableVMList and

gloableUsedVMList and also
availableResourceList from each cloud schedular

4. // find the appropriate VMList fromeach cloud
scheduler

5. if AP(R,AR) != ф then
6. // call the algorithm 1 load balancer
7. deployableVm=load-balancer(AP(R,AR))
8. Deploy service on deployableVM
9. deploy=true
10. Else if R has advance reservation and best-effort

 task is running on any cloud then
11. // Call algorithm 3 CMMS for executing R

 with advance reservation
12. Deployed=true
13. Else if globalResourceAbleToHostExtraVM then
14. Start newVMInstance
15. Add VMToAvailbaleVMList
16. Deploy service on newVM
17. Deployed=true
18. Else
19. queue serviceReuest until

20. queueTime > waitingTime
21. Deployed=false
22. End if
23. If deployed then
24. return successful
25. terminate
26. Else
27. return failure
28. terminate

As shown above in Algorithm 4, the customers’ service
deployment requests (R), which is composed of the SLA terms
(S) and the application data (A) to be provisioned, is provided
as input to scheduler (line 1 in Algorithm 1). When service
request (i.e. job) arrive at cloud scheduler, scheduler divide it
in tasks as per there dependencies then the Algorithm 2 is
called to form the list of tasks based to their priority (line 2). In
the first step, it extracts the SLA terms, which forms the basis
for finding the VM with the appropriate resources for
deploying the application. In next step, it collects the
information about the number of running VMs in each cloud
and the total available resources (AR) (line 3). According to
SLA terms appropriate VMs (AP) list is form, which are
capable of provisioning the requested service (R) (lines 4-5).

Once the list of appropriate VMs is form, the Algorithm 1-
load-balancer decides which particular VM is allocated to
service request in order to balance the load in the data center of
each cloud (lines 6-9).

When there is no VM with the appropriate resources running
in the data center of any cloud, the scheduler checks if service
request (R) has advance reservation then it search for best-
effort task running on any cloud or not, if it found best-effort
task then it calls Algorithm 3 CMMS for executing advance
reservation request by preempting best-effort task (lines 10-
12). If no best-effort task is found on any cloud then scheduler
checks whether the global resources consisting of physical
resources can host new VMs, if yes then, it automatically starts
new VMs with predefined resource capacities to provision
service requests (lines 13-17). But when global resources are
not sufficient to host extra VMs, the provisioning of service
request is place in queue by the scheduler until a VM with
appropriate resources is available (lines 18-22). If after a
certain period of time, the service requests can be scheduled
and deployed, then scheduler returns a scheduling success to
the cloud admin, otherwise it returns failure (lines 23-28).

V. EXPERIMENTAL RESULTS

A. Experiment setup

We evaluate the performance of our priority based
scheduling algorithm through simulations. With different
set of jobs simulation is done in 10 runs. In each run of
simulation, we simulate a set of 70 different service
requests (i.e. jobs), and each service request is composed of
up to 18 sub-tasks. We consider 4 clouds in the simulation.
All 70 service requests will be submitted to random clouds
at arbitrary arrival time. Among these 70 service request, 15
requests are in the AR modes, while the rest are in the best-
effort modes, with different SLA objectives. The
parameters in Table 1 are set in simulation randomly
according to their maximum and minimum values. Since we
focus only on the scheduling algorithms, we do our

simulations locally without implementing in any exiting
cloud system or using VM interface API.

Table 1 RANGE OF PARAMETERS
Parameter Minimum Maximum

ETMi,j 27 120
Number of VMs in a

cloud
22 120

Number of CPU in a VM 1 8
Memory in a VM 40 2048
Disk space in VM 5000 100000

Speed of copy in disk 100 1000

We consider two situations for arrival of service request. In
first situation, called as loose situation, we spread arrival time
of request widely over time so that request does not need to
contend resources in cloud. In other situation we set arrival
time of requests close to each other, so known as tight
situation. The time elapses from request is submitted to the
request is finished, is defined as execution time.

B. Results

Figure 2 shows the average job execution time in loose
situation. We find out that the PBSA algorithm has the
minimum average execution time. The resource contentions
occur when best-effort job is preempted by AR job. As
resource contention less in loose situation, so that estimated
finish time of job is close to the actual finish time. Hence
adaptive procedure does not impact the job execution time
significantly.

Figure 2. Average job execution time in loose situation

In figure 3 tight situation results are shown in which
PBSA performs better than CMMS. In tight situation
resource contention is more so the actual finish time of job
is often later than estimated finish time. As AR job preempt
best-effort job, the adaptive procedure with updated
information works more significantly in tight situation.

Figure 3. Average job execution time in tight situation

VI. CONCLUSIONS

In this paper, we present dynamic resource allocation
mechanism for Preemptable jobs in cloud. We propose
priority based algorithm, in which considering multiple
SLA objectives of job, for dynamic resource allocation to
AR job by preempting best-effort job. Simulation results
show that PBSA perform better than CMMS in resource
contention situation.

REFERENCES
[1] S. K. Garg, R. Buyya, and H. J. Siegel, “Time and cost trade off

management for scheduling parallel applications on utility grids,”
Future Generation. Computer System, 26(8):1344–1355, 2010.

[2] S. Pandey, L. Wu, S. M. Guru, and R. Buyya, “A particle swarm
optimization-based heuristic for scheduling workflow applications in
cloud computing environments,” in AINA ’10: Proceedings of the
2010, 24th IEEE International Conference on Advanced Information
Networking and Applications, pages 400–407, Washington, DC, USA,
2010, IEEE Computer Society.

[3] M. Salehi and R. Buyya, “Adapting market-oriented scheduling
policies for cloud computing,” In Algorithms and Architectures for
Parallel Processing, volume 6081 of Lecture Notes in Computer
Science, pages 351–362. Springer Berlin / Heidelberg, 2010.

[4] J. M. Wilson, “An algorithm for the generalized assignment problem
with special ordered sets,” Journal of Heuristics, 11(4):337–350, 2005.

[5] M. Qiu and E. Sha, “Cost minimization while satisfying hard/soft
timing constraints for heterogeneous embedded systems,” ACM
Transactions on Design Automation of Electronic Systems (TODAES),
vol. 14, no. 2, pp. 1–30, 2009.

[6] M. Qiu, M. Guo, M. Liu, C. J. Xue, and E. H.-M. S. L. T. Yang,
“Loop scheduling and bank type assignment for heterogeneous
multibank memory,” Journal of Parallel and Distributed
Computing(JPDC), vol. 69, no. 6, pp. 546–558, 2009.

[7] A. Dogan and F. Ozguner, “Matching and scheduling algorithms for
minimizing execution time and failure probability of applications in
heterogeneous computing,” IEEE Transactions on Parallel and
Distributed Systems, pp. 308–323, 2002.

[8] T. Hagras and J. Janecek, “A high performance, low complexity
algorithm for compile-time task scheduling in heterogeneous
systems,” Parallel Computing, vol. 31, no. 7, pp. 653–670, 2005.

[9] “Adaptive Management of Virtualized Resources in Cloud Computing
Using Feedback Control,” in First International Conference on
Information Science and Engineering, April 2010, pp. 99-102.

[10]W. E. Walsh, G. Tesauro, J. O. Kephart, and R. Das, “Utility
Functions in Autonomic Systems,” in ICAC ’04: Proceedings of the
First International Conference on Autonomic Computing. IEEE
Computer Society, pp. 70–77, 2004.

[11] Jiayin Li, Meikang Qiu, Jian-Wei Niu, Yu Chen, Zhong Ming,
“Adaptive Resource Allocation for Preempt able Jobs in Cloud
Systems,” in 10th International Conference on Intelligent System
Design and Application, Jan. 2011, pp. 31-36.

[12] Yazir Y.O., Matthews C., Farahbod R., Neville S., Guitouni A.,
Ganti S., Coady Y., “Dynamic resource allocation based on
distributed multiple criteria decisions in computing cloud,” in 3rd

International Conference on Cloud Computing, Aug. 2010, pp.
91-98.

[13] Goudarzi H., Pedram M., “Multi-dimensional SLA-based Resource
Allocation for Multi-tier Cloud Computing Systems,” in IEEE
International Conference on Cloud Computing, Sep. 2011, pp. 324-
331.

[14] Shi J.Y., Taifi M., Khreishah A.,“Resource Planning for Parallel
Processing in the Cloud,” in IEEE 13th International Conference on
High Performance and Computing, Nov. 2011, pp. 828-833.

[15] Aoun R., Doumith E.A., Gagnaire M., “Resource Provisioning for
Enriched Services in Cloud Environment,” IEEE Second
International Conference on Cloud Computing Technology and
Science, Feb. 2011, pp. 296-303.

[16] T. Erl, “Service-oriented Architecture: Concepts, Technology, and
Design”, Upper Saddle River, Prentice Hall, 2005.

[17] F. Chong, G. Carraro, and R. Wolter,“Multi-Tenant Data
Architecture”, Microsoft Corporation, 2006.

[18] E. Knorr, “Software as a service: The next big thing”, InfoWorld,
March 2006.

[19] V. Ungureanu, B. Melamed, and M.Katehakis,“Effective Load
Balancing for Cluster-Based Servers Employing Job Preemption,”
Performance Evaluation, 65(8), July 2008, pp. 606-622.

[20] L. Aversa and A. Bestavros. “Load Balancing a Cluster of Web
Servers using Distributed Packet Rewriting”, Proceedings of the 19th

IEEE International Performance, Computing, and Communication
Conference, Phoenix, AZ, Feb. 2000, pp. 24-29.

[21] V. Cardellini, M. Colajanni, P. S. Yu,“Dynamic Load Balancing on
Web-Server Systems”, IEEE Internet Computing, Vol. 33, May-June
1999, pp. 28 -39.

[22] Chieu T.C., Mohindra A., Karve A.A., Segal A., “Dynamic Scaling
of Web Applications in a Virtualized Cloud Computing
Environment,” in IEEE International Conference on e-Business
Engineering, Dec. 2009, pp. 281-286.

[23] Naidila Sadashiv, S. M Dilip Kumar, “Cluster, Grid and Cloud
Computing: A Detailed Comparison,” The 6th International
Conference on Computer Science & Education (ICCSE 2011) August
3-5, 2011. SuperStar Virgo, Singapore, pp. 477- 482.

[24] Vincent C. Emeakaroha, Ivona Brandic, Michael Maurer, Ivan
Breskovic, “SLA-Aware Application Deployment and Resource
Allocation in Clouds”, 35th IEEE Annual Computer Software and
Application Conference Workshops, 2011, pp. 298-303.

[25] V. C. Emeakaroha, I. Brandic, M. Maurer, and S. Dustdar, “Low level
metrics to high level SLAs - LoM2HiS framework: Bridging the gap
between monitored metrics and SLA parameters in cloud
environments,” In High Performance Computing and Simulation
Conference, pages 48 – 55, Caen, France, 2010.

[26]M. Maurer, I. Brandic, V. C. Emeakaroha, and S. Dustdar, “Towards
knowledge management in self-adaptable clouds,” In 4th International
Workshop of Software Engineering for Adaptive Service-Oriented
Systems (SEASS’10) , Miami, Florida, USA, 2010.

[27] T. Hagras and J. Janecek, “A high performance, low complexity
algorithm for compile-time task scheduling in heterogeneous
systems,” Parallel Computing, vol. 31, no. 7, pp. 653–670, 2005.

[28] O. H. Ibarra and C. E. Kim, “Heuristic Algorithms for Scheduling
Independent Tasks on Non-identical Processors,” Journal of the
ACM, pp. 280–289, 1977.

Priority Based Dynamic resource allocation in Cloud Computing

Chandrashekhar S. Pawar

M. E. student

Department of Computer Engineering

R. C. Patel Institute of Technology

Shirpur, India

pawar.chandrashekhar09@yahoo.com

Rajnikant B. Wagh

Associate Professor

Department of Computer Engineering

R. C. Patel Institute of Technology

Shirpur, India

raj_wagh@rediffmail.com

Abstract- Today Cloud computing is on demand as it offers dynamic flexible resource allocation, for reliable and guaranteed services in pay-as-you-use manner, to Cloud service users. So there must be a provision that all resources are made available to requesting users in efficient manner to satisfy customer’s need. This resource provisioning is done by considering the Service Level Agreements (SLA) and with the help of parallel processing. Recent work considers various strategies with single SLA parameter. Hence by considering multiple SLA parameter and resource allocation by preemption mechanism for high priority task execution can improve the resource utilization in Cloud. In this paper we propose an algorithm which considered Preemptable task execution and multiple SLA parameters such as memory, network bandwidth, and required CPU time. An obtained experimental results show that in a situation where resource contention is fierce our algorithm provides better utilization of resources.

Keywords- Cloud computing, Infrastructure as a Service (IaaS), Platform as a Service (PaaS), Resource management, Software as a Service (SaaS), Virtual machine, Virtualization.

I. INTRODUCTION

Cloud computing is the delivery of computing as a service rather than a product, whereby shared resources, software and information are provided to users over the network. Cloud computing providers deliver application via the Internet, which are accessed from web browser, while the business software and data are stored on servers at a remote location.

Cloud providers are able to attain the agreed SLA, by scheduling resources in efficient manner and by deploying application on proper VM as per the SLA objective and at the same time performance of the applications must be optimized. Presently, there exists a more work done on scheduling of applications in Clouds [1], [2], [3]. These approaches are usually considering one single SLA objective such as cost of execution, execution time, etc. Due to combinatorial nature scheduling algorithm with multiple SLA objective for optimal mapping of workload with multiple SLA parameters to resources is found to be NP-hard [4]. The available solutions are based on the use of heuristics.

When a job is submitted to the clouds, it is usually partitioned into several tasks. Following two questions are need to consider when applying parallel processing in executing these tasks: 1). how to allocate resources to tasks; 2) task are executed in what order in cloud; and 3) how to schedule overheads when VMs prepare, terminate or switch tasks. Task scheduling and resource allocation can solve these three problems. In embedded systems [5], [6] and in high performance computing [7], [8] task scheduling and resource allocation have been studied.

Typically, efficient provisioning requires two distinct steps or processes: (1) initial static planning step: the initially group the set of VMs, then classify them and deployed onto a set of physical hosts; and (2) dynamic resource provisioning: the allocation of additional resources, creation and migration of VMs, dynamically responds to varying workload. Step 2 runs continuously at production time where in contrast Step 1 is usually performed at the initial system set up time and may only be repeated for overall cleanup and maintenance on a monthly or semi-annually schedule.

In this paper we focus on dynamic resource provisioning as mentioned above in step 2. In order to attain the agreed SLA objective our proposed algorithm dynamically responds to fluctuating work load by preempting the current executing task having low priority with high priority task and if preemption is not possible due same priority then by creating the new VM form globally available resources.

In section II, we discuss works related to this topic. In section III, models for resource allocation and task scheduling in IaaS cloud computing system are presented. We propose our algorithms in section IV, followed by experimental result in section V. Finally, we give the conclusion in section VI.

II. RELATED WORK

In [9] author proposed architecture, using feedback control theory, for adaptive management of virtualized resources, which is based on VM. In this VM-based architecture all hardware resources are pooled into common shared space in cloud computing infrastructure so that hosted application can access the required resources as per there need to meet Service Level Objective (SLOs) of application. The adaptive manager use in this architecture is multi-input multi-output (MIMO) resource manager, which includes 3 controllers: CPU controller, memory controller and I/O controller, its goal is regulate multiple virtualized resources utilization to achieve SLOs of application byusing control inputs per-VM CPU, memory and I/O allocation.

The seminal work of Walsh et al. [10], proposed a general two-layer architecture that uses utility functions, adopted in the context of dynamic and autonomous resource allocation, which consists of local agents and global arbiter. The responsibility of local agents is to calculate utilities, for given current or forecasted workload and range of resources, for each AE and results are transfer to global arbiter. Where, global arbiter computes near-optimal configuration of resources based on the results provided by the local agents. In global arbiter, the new configurations applied by assigning new resources to the AEs and the new configuration computed either at the end of fixed control intervals or in an event triggered manner or anticipated SLA violation.

In [11], authors propose an adaptive resource allocation algorithm for the cloud system with preempt able tasks in which algorithms adjust the resource allocation adaptively based on the updated of the actual task executions. Adaptive list scheduling (ALS) and adaptive min-min scheduling (AMMS) algorithms are use for task scheduling which includes static task scheduling, for static resource allocation, is generated offline. The online adaptive procedure is use for re-evaluating the remaining static resource allocation repeatedly with predefined frequency. In each re-evaluation process, the schedulers are re-calculating the finish time of their respective submitted tasks, not the tasks that are assign to that cloud.

The dynamic resource allocation based on distributed multiple criteria decisions in computing cloud explain in [12]. In it author contribution is tow-fold, first distributed architecture is adopted, in which resource management is divided into independent tasks, each of which is performed by Autonomous Node Agents (NA) in ac cycle of three activities: (1) VMPlacement, in it suitable physical machine (PM) is found which is capable of running given VM and then assigned VM to that PM, (2) Monitoring, in it total resources use by hosted VM are monitored by NA, (3) In VMSelection, if local accommodation is not possible, a VM need to migrate at another PM and process loops back to into placement. And second, using PROMETHEE method, NA carry out configuration in parallel through multiple criteria decision analysis. This approach is potentially more feasible in large data centers than centralized approaches.

The problem of resource allocation is considered in [13], to optimize the total profit gained from the multi-dimensional SLA contracts for multi-tire application. In it the upper bound of total profit is provided with the help of force-directed resource assignment (FRA) heuristic algorithm, in which initial solution is based on provided solution for profit upper bound problem. Next, distribution rates are fixed and local optimization step is use for improving resource sharing. Finally, a resource consolidation technique is applied to consolidate resources to determine the active (ON) servers and further optimize the resource assignment.

 Using steady state timing models, this [14] paper reports a study of cloud HPC resource planning. In it author propose quantitative application dependent instrumentation method to investigate multiple important dimensions of a program’s scalability. Sequential and parallel timing model with program instrumentations can reveal architecture specific deliverable performances that are difficult to measure otherwise. These models are introduces to connect multiple dimensions to time domain and application speed up model is use to tie these models in same equation. The ability to explore multiple dimension of program quantitatively, to gain non-trivial insight. For target processing environment authors use Amazon EC2.

In previous years, the aims of distributed system have been centered on the decoupling of interfaces from service oriented architectures (SOA) [16], implementation, subscription model, hosting models and social collaboration. Recently, Internet-based distributed, multi-tenant [17] applications connective to internal business applications, known as software as a service (SaaS) [18], are gaining popularity. The previous work [19-21] on web application scalability implemented for static load balancing solution with server clusters but the dynamic scaling of web applications in virtualized cloud computing has not been much discussed. Because such kinds of work load require minimum response time and high level of availability and reliability from web applications.

A solution for dynamic scaling of web application provided in [22] by describing an architecture to scale web application in dynamic manner, based on threshold in a virtualized cloud computing environment. Architecture consists of front-end load balancer, a no. of web application virtual machine. In it apache HTTP Load Balancer is a front-end load-balancer for routing and balancing user requests to web application deployed on Apache HTTP server that are installed in Linux virtual machine. As per the demand these virtual machines are started and provisioned by a provisioning sub-system. But the action of provisioning and de-provisioning of web server virtual machine instances control by a dynamic scaling algorithm based on relevant threshold of web application.

III. USE TECHNIQUES

In this section we are describing SLA based resource provisioning and online adaptive scheduling for Preemptable task execution, these two methodologies which are combined in proposed algorithm for effective utilization of cloud resources to meet the SLA objective.

A. Cloud Resource provisioning and scheduling heuristic

The service requests from customers host by combining the three different layers of resource provisioning as shown in following figure 1[24]. 	

[image:]

Figure 1. Cloud Provisioning and Deployment model

	Service deployment requests from customers is place to the service portal (step 1 in Figure1), which forward the requests to the request management and processing component to validate the requests with the help of SLA(step 2). If the request is valid, it is then pass to the scheduler and load-balancer (step 3). For deploying the requested service, scheduler selects the appropriate VMs, as per SLA and priority, through the provisioning engine in PaaS layer and the load-balancer balances the service provisioning among the running VMs (step 4). The VMs on the virtualization layer manage by provision engine and the virtualization layer interacts with the physical resources with the help of the provision engine in IaaS layer (step 5).

The LoM2HiS framework monitors the low-level resource metrics of the physical resources at IaaS layer [25] (step 6). If SLA violation occurs, reactive actions provide by the knowledge database techniques [26] in FoSII (step 7). The requested service status and the SLA information are communicated back with the service portal (step 8).

Provisioning can be done at the single layers alone. However, approach which we considered in [24] aims to provide an integrated resource provisioning strategy. Thus, scheduling heuristics in [24] considers the three layers.

An aim of scheduling heuristic in [24] is to schedule job on VMs based on the agreed SLA objective and creating new VMs on physical resources based on availabilities resources. This strategy helps to optimized application performance and at the same time reducing the possibilities of SLA violations. And, the integrated load-balancer (Algorithm 1 Load-balancer given below) in the heuristic ensures high and efficient resource utilization in the Cloud environment.

 	The customers’ service deployment requests (R) is provide as input to scheduler which consist of the SLA terms (S) and the application data (A) to be provisioned. Then it gets the total available physical resources (AR) and the number of running VMs in the data center in cloud. The SLA terms are used to find a list of appropriate VMs (AP) capable of provisioning the requested service (R).

	The load-balancer is presented below in Algorithm 1. Appropriate VM list is provided as input to it (line 1 in Algorithm 2). In its operations, in order to know how to balance the load among the VMs it first finds out the number of available running VMs in the data centre (line 2). In the next step, it gets a list of VMs which are already allocated to job i.e. list of used VMs. (line 3). It clears the list if this list is equal to the number of running VMs, because that means all the VMs are currently allocated to some applications (lines 4-7).

Algorithm 1 Load Balancer

1. Input: AP(R,AR)

2. availableVMList //list of available VMs form each cloud

3. usedVMList //list of VMs,currently provision to certain job

4. deployableVm=null

5. if size(usedVMList)=size(availbleVMList) then

6. clear usedVMList

7. End if

8. for vm in (AP,R,AR) do

9. if vm not in usedVMList then

10. Add VM to usedVMList

11. deployableVm= vm

12. Break

13. End if

14. End for

15. Return deployableVm

Therefore, the first VM from the appropriate and available VM list can be selected for the deployment of the new job request. Lastly, the selected VM will be added to the list of used VMs so that the load-balancer will not select it in the next iteration (lines 8-15).

B. Preemptable task execution

	When a scheduler receives customer’s service request, it will first partition that service request into tasks in the form of a DAG. Then initially static resource allocation is done. In [11] authors proposed two greedy algorithms, to generate the static allocation: the cloud list scheduling (CLS) and the cloud min-min scheduling (CMMS).

1) Cloud list scheduling (CLS): This CLS is similar to CPNT [27]. The definitions used for listing the task are provided as follow. The earliest start time (EST) and the latest start time (LST) of a task are shown as in (1) and (2).The entry-tasks have EST equals to 0. And The LST of exit-tasks equal to their EST.

As the cloud system concerned in [11] is heterogeneous the execution time of each task on VMs of different clouds are not the same. AT(𝑣𝑖) is the average execution time of task 𝑣𝑖. The critical node (CN) is a set of vertices having equal EST and LST in the DAG. Algorithm 2 shows a function forming a task list based on the priorities.

Algorithm 2 Forming a task list based on priorities

Require (input): A DAG, Average execution time AT of every task in the DAG

Ensure (output): A list of task P based on priorities

1. The EST is calculated for every task

2. The LST is calculated for every task

3. The Tp and Bp of every task are calculated

4. Empty list P and stack S, and pull all task in the list of task U

5. Push the CN task into stack S in decreasing order of their LST

6. While the stack S is not empty do

7. If top(S) has un-stacked immediate

 predecessors then

8. S the immediate predecessor with

 least LST

9. Else

10. P top(S)

11. Pop top(S)

12. End if

13. End while

Once the above algorithm 2 form the list of task according there priority, we can allocate resources to tasks in the order of formed list. When all the predecessor tasks of the assigned task are finished and cloud resources allocated to them are available, the assigned task will start its execution. This task is removed from the list after its assignment. This procedure is repeats until the list is empty.

2) Cloud min-min scheduling (CMMS): Min-min scheduling is popular greedy algorithm [28]. The dependencies among tasks not considered in original min-min algorithm. So in the dynamic min-min algorithm used in [2], authors maintain the task dependencies by updating the map able task set in every scheduling step. The tasks whose predecessor tasks are all assigned are placed in the map able task set. Algorithm 3 shows the pseudo codes of the CMMS algorithm.

	A cloud scheduler record execution schedule of all resources using a slot. When an AR task is assigned to a cloud, first resource availability in this cloud will be checked by cloud scheduler. Since best-effort task can be preempted by AR task, the only case when most of resources are reserved by some other AR task. Hence there are not enough resources left for this AR task in the required time slot. If the AR task is not rejected, which means there are enough resources available for the task, a set of required VMs are selected arbitrarily.

The estimated finish time of task may not be same as actual finish time due to the resource contention within individual cloud. Hence to adjust the resource allocation dynamically based on the latest available information authors in [2] propose an online adaptive scheduling procedure.

	In proposed online adaptive procedure the remaining static resource allocation will be re-evaluate repeatedly with a predefined frequency. In each re-evaluation, the schedulers will re-calculate the estimated finish time of their tasks. Note that a scheduler of a given cloud will only re-evaluate the tasks that are in the jobs submitted to this cloud, not the tasks that are assigned to this cloud.

Algorithm 3 Cloud min-min scheduling (CMMS)

Require: A set of tasks, m different clouds ETM matrix

Ensure: A schedule generated by CMMS

1. For a mappable task set P

2. While there are tasks not assigned do

3. Update mappable task set P

4. For I = task vi ∈ P do

5. Send task check requests of vi to all other cloud schedulers

6. Receive the earliest resource available time response and And list of task with their priorities form all other cloud scheduler

7. Find the cloud Cmin(vi) giving the earliest finish time of vi, assuming no other task preempts vi

8. End for

9. Find the task-cloud pair (vk, Cmin(vk)) with

earliest finish time in the pairs generated in for-loop

10. Assign task vk to cloud Dmin(vk)

11. Remove vk form P

12. Update the mappbale task set P

13. End while

	

IV. SCHEDULING ALGORITHM

	In proposed priority based scheduling algorithm we have modified the scheduling heuristic in [24] for executing highest priority task with advance reservation by preempting best-effort task as done in [11]. Algorithm 4 shows the pseudo codes of priority based scheduling algorithm (PBSA).

Algorithm 4 Priority Based Scheduling Algorithm (PBSA)

1. Input: UserServiceRequest

2. //call Algorithm 2 to form the list of task based on priorities

3. get globalAvailableVMList and gloableUsedVMList and also availableResourceList from each cloud schedular

4. // find the appropriate VMList fromeach cloud scheduler

5. if AP(R,AR) != ф then

6. // call the algorithm 1 load balancer

7. deployableVm=load-balancer(AP(R,AR))

8. Deploy service on deployableVM

9. deploy=true

10. Else if R has advance reservation and best-effort

 task is running on any cloud then

11. // Call algorithm 3 CMMS for executing R

 with advance reservation

12. Deployed=true

13. Else if globalResourceAbleToHostExtraVM then

14. Start newVMInstance

15. Add VMToAvailbaleVMList

16. Deploy service on newVM

17. Deployed=true

18. Else

19. queue serviceReuest until

20. queueTime > waitingTime

21. Deployed=false

22. End if

23. If deployed then

24. return successful

25. terminate

26. Else

27. return failure

28. terminate

	As shown above in Algorithm 4, the customers’ service deployment requests (R), which is composed of the SLA terms (S) and the application data (A) to be provisioned, is provided as input to scheduler (line 1 in Algorithm 1). When service request (i.e. job) arrive at cloud scheduler, scheduler divide it in tasks as per there dependencies then the Algorithm 2 is called to form the list of tasks based to their priority (line 2). In the first step, it extracts the SLA terms, which forms the basis for finding the VM with the appropriate resources for deploying the application. In next step, it collects the information about the number of running VMs in each cloud and the total available resources (AR) (line 3). According to SLA terms appropriate VMs (AP) list is form, which are capable of provisioning the requested service (R) (lines 4-5).

	Once the list of appropriate VMs is form, the Algorithm 1-load-balancer decides which particular VM is allocated to service request in order to balance the load in the data center of each cloud (lines 6-9).

	When there is no VM with the appropriate resources running in the data center of any cloud, the scheduler checks if service request (R) has advance reservation then it search for best-effort task running on any cloud or not, if it found best-effort task then it calls Algorithm 3 CMMS for executing advance reservation request by preempting best-effort task (lines 10-12). If no best-effort task is found on any cloud then scheduler checks whether the global resources consisting of physical resources can host new VMs, if yes then, it automatically starts new VMs with predefined resource capacities to provision service requests (lines 13-17). But when global resources are not sufficient to host extra VMs, the provisioning of service request is place in queue by the scheduler until a VM with appropriate resources is available (lines 18-22). If after a certain period of time, the service requests can be scheduled and deployed, then scheduler returns a scheduling success to the cloud admin, otherwise it returns failure (lines 23-28).

V. EXPERIMENTAL RESULTS

A. Experiment setup

We evaluate the performance of our priority based scheduling algorithm through simulations. With different set of jobs simulation is done in 10 runs. In each run of simulation, we simulate a set of 70 different service requests (i.e. jobs), and each service request is composed of up to 18 sub-tasks. We consider 4 clouds in the simulation. All 70 service requests will be submitted to random clouds at arbitrary arrival time. Among these 70 service request, 15 requests are in the AR modes, while the rest are in the best-effort modes, with different SLA objectives. The parameters in Table 1 are set in simulation randomly according to their maximum and minimum values. Since we focus only on the scheduling algorithms, we do our simulations locally without implementing in any exiting cloud system or using VM interface API.

Table 1 RANGE OF PARAMETERS

		Parameter

		Minimum

		Maximum

		ETMi,j

		27

		120

		Number of VMs in a cloud

		22

		120

		Number of CPU in a VM

		1

		8

		Memory in a VM

		40

		2048

		Disk space in VM

		5000

		100000

		Speed of copy in disk

		100

		1000

	

	We consider two situations for arrival of service request. In first situation, called as loose situation, we spread arrival time of request widely over time so that request does not need to contend resources in cloud. In other situation we set arrival time of requests close to each other, so known as tight situation. The time elapses from request is submitted to the request is finished, is defined as execution time.

B. Results

 Figure 2 shows the average job execution time in loose situation. We find out that the PBSA algorithm has the minimum average execution time. The resource contentions occur when best-effort job is preempted by AR job. As resource contention less in loose situation, so that estimated finish time of job is close to the actual finish time. Hence adaptive procedure does not impact the job execution time significantly.

[image: F:\Documents and Settings\DIGIT\My Documents\My Pictures\fig2.tif]

Figure 2. Average job execution time in loose situation

In figure 3 tight situation results are shown in which PBSA performs better than CMMS. In tight situation resource contention is more so the actual finish time of job is often later than estimated finish time. As AR job preempt best-effort job, the adaptive procedure with updated information works more significantly in tight situation.

	

[image: F:\Documents and Settings\DIGIT\My Documents\My Pictures\fig3.tif]

Figure 3. Average job execution time in tight situation

VI. CONCLUSIONS

In this paper, we present dynamic resource allocation mechanism for Preemptable jobs in cloud. We propose priority based algorithm, in which considering multiple SLA objectives of job, for dynamic resource allocation to AR job by preempting best-effort job. Simulation results show that PBSA perform better than CMMS in resource contention situation.

REFERENCES

[1] S. K. Garg, R. Buyya, and H. J. Siegel, “Time and cost trade off management for scheduling parallel applications on utility grids,” Future Generation. Computer System, 26(8):1344–1355, 2010.

[2] S. Pandey, L. Wu, S. M. Guru, and R. Buyya, “A particle swarm optimization-based heuristic for scheduling workflow applications in cloud computing environments,” in AINA ’10: Proceedings of the 2010, 24th IEEE International Conference on Advanced Information Networking and Applications, pages 400–407, Washington, DC, USA, 2010, IEEE Computer Society.

[3] M. Salehi and R. Buyya, “Adapting market-oriented scheduling policies for cloud computing,” In Algorithms and Architectures for Parallel Processing, volume 6081 of Lecture Notes in Computer Science, pages 351–362. Springer Berlin / Heidelberg, 2010.

[4] J. M. Wilson, “An algorithm for the generalized assignment problem with special ordered sets,” Journal of Heuristics, 11(4):337–350, 2005.

[5] M. Qiu and E. Sha, “Cost minimization while satisfying hard/soft timing constraints for heterogeneous embedded systems,” ACM Transactions on Design Automation of Electronic Systems (TODAES), vol. 14, no. 2, pp. 1–30, 2009.

[6] M. Qiu, M. Guo, M. Liu, C. J. Xue, and E. H.-M. S. L. T. Yang, “Loop scheduling and bank type assignment for heterogeneous multibank memory,” Journal of Parallel and Distributed Computing(JPDC), vol. 69, no. 6, pp. 546–558, 2009.

[7] A. Dogan and F. Ozguner, “Matching and scheduling algorithms for minimizing execution time and failure probability of applications in heterogeneous computing,” IEEE Transactions on Parallel and Distributed Systems, pp. 308–323, 2002.

[8] T. Hagras and J. Janecek, “A high performance, low complexity algorithm for compile-time task scheduling in heterogeneous systems,” Parallel Computing, vol. 31, no. 7, pp. 653–670, 2005.

[9] “Adaptive Management of Virtualized Resources in Cloud Computing Using Feedback Control,” in First International Conference on Information 	Science and Engineering, April 2010, pp. 99-102.

[10] W. E. Walsh, G. Tesauro, J. O. Kephart, and R. Das, “Utility Functions in Autonomic Systems,” in ICAC ’04: Proceedings of the First International Conference on Autonomic Computing. IEEE Computer Society, pp. 70–77, 2004.

[11] 	Jiayin Li, Meikang Qiu, Jian-Wei Niu, Yu Chen, Zhong Ming, “Adaptive Resource Allocation for Preempt able Jobs in Cloud Systems,” in 10th International Conference on Intelligent System Design and Application, Jan. 2011, pp. 31-36.

[12] Yazir Y.O., Matthews C., Farahbod R., Neville S., Guitouni A., 	Ganti S., Coady Y., “Dynamic resource allocation based on 	distributed multiple criteria decisions in computing cloud,” in 3rd 	International Conference on Cloud Computing, Aug. 2010, pp. 	91-98.

[13] Goudarzi H., Pedram M., “Multi-dimensional SLA-based Resource Allocation for Multi-tier Cloud Computing Systems,” in 	IEEE International Conference on Cloud Computing, Sep. 2011, pp. 324-331.

[14] 	Shi J.Y., Taifi M., Khreishah A.,“Resource Planning for Parallel Processing in the Cloud,” in IEEE 13th International Conference on High Performance and Computing, Nov. 2011, pp. 828-833.

[15] Aoun R., Doumith E.A., Gagnaire M., “Resource Provisioning for Enriched Services in Cloud Environment,” IEEE Second International Conference on Cloud Computing Technology and Science, Feb. 2011, pp. 296-303.

[16] T. Erl, “Service-oriented Architecture: Concepts, Technology, and Design”, Upper Saddle River, Prentice Hall, 2005.

[17] F. Chong, G. Carraro, and R. Wolter,“Multi-Tenant Data Architecture”, Microsoft Corporation, 2006.

[18] E. Knorr, “Software as a service: The next big thing”, InfoWorld, March 2006.

[19] V. Ungureanu, B. Melamed, and M.Katehakis,“Effective Load Balancing for Cluster-Based Servers Employing Job Preemption,” Performance Evaluation, 65(8), July 2008, pp. 606-622.

[20] L. Aversa and A. Bestavros. “Load Balancing a Cluster of Web Servers using Distributed Packet Rewriting”, Proceedings of the 19th IEEE International Performance, Computing, and Communication Conference, Phoenix, AZ, Feb. 2000, pp. 24-29.

[21] V. Cardellini, M. Colajanni, P. S. Yu,“Dynamic Load Balancing on Web-Server Systems”, IEEE Internet Computing, Vol. 33, May-June 1999, pp. 28 -39.

[22] Chieu T.C., Mohindra A., Karve A.A., Segal A., “Dynamic Scaling of Web Applications in a Virtualized Cloud Computing Environment,” in IEEE International Conference on e-Business Engineering, Dec. 2009, pp. 281-286.

[23] Naidila Sadashiv, S. M Dilip Kumar, “Cluster, Grid and Cloud Computing: A Detailed Comparison,” The 6th International Conference on Computer Science & Education (ICCSE 2011) August 3-5, 2011. SuperStar Virgo, Singapore, pp. 477- 482.

[24] Vincent C. Emeakaroha, Ivona Brandic, Michael Maurer, Ivan Breskovic, “SLA-Aware Application Deployment and Resource Allocation in Clouds”, 35th IEEE Annual Computer Software and Application Conference Workshops, 2011, pp. 298-303.

[25] V. C. Emeakaroha, I. Brandic, M. Maurer, and S. Dustdar, “Low level metrics to high level SLAs - LoM2HiS framework: Bridging the gap between monitored metrics and SLA parameters in cloud environments,” In High Performance Computing and Simulation Conference, pages 48 – 55, Caen, France, 2010.

[26] M. Maurer, I. Brandic, V. C. Emeakaroha, and S. Dustdar, “Towards knowledge management in self-adaptable clouds,” In 4th International Workshop of Software Engineering for Adaptive Service-Oriented Systems (SEASS’10) , Miami, Florida, USA, 2010.

[27] T. Hagras and J. Janecek, “A high performance, low complexity algorithm for compile-time task scheduling in heterogeneous systems,” Parallel Computing, vol. 31, no. 7, pp. 653–670, 2005.

[28] O. H. Ibarra and C. E. Kim, “Heuristic Algorithms for Scheduling Independent Tasks on Non-identical Processors,” Journal of the ACM, pp. 280–289, 1977.

image1.emf

image2.wmf

)

2

(

)

(

)}

(

{

max

)

(

)

1

(

)}

(

)

(

{

max

)

(

)

(

)

(

K

K

i

m

v

succ

v

i

m

m

v

pred

v

i

v

AT

v

LST

v

LST

v

AT

v

EST

v

EST

i

m

i

m

-

=

+

=

Î

Î

oleObject1.bin

image3.tiff

510

——crams
—m—pBsA

Average Job Execution Time

0 01020304 0506070803 1
Constant @

image4.tiff

[——chns.
—m—pssa

0 0102 0304 05 06 07 08 09

Constant @

1

